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SYNTHESIS OF THE QUAD-ROTOR CONTROL ALGORITHMS IN THE

BASIC FLIGHT MODES

VLADIMIR B. LARIN1, ANATOLY A. TUNIK2

Abstract. The synthesis of the quad-rotor control algorithms in the basic flight modes is

considered. These include the basic modes of the horizontal quad-rotor flight: position control,

cruise speed control and reference path tracking. The control algorithms are designed using

traditional optimization procedures including also some specific optimization procedures likewise

singular optimization problem solution for cruise speed control synthesis and introducing phase

lead in the control algorithm in order to improve the path tracking performance. The efficiency

of the proposed algorithms and the comparison of results obtained in this paper with results of

other authors are illustrated by examples.
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1. Introduction

Traditional problems of stability, control and guidance continue to attract the attention of

researches (see, for example, [2-12], where further references are given). Moreover the methods of

solution of these problems are successfully applied for design of the practical systems especially

the flight control systems [3- 8, 9-12]. Among various problems of the flight control, the problem

of the quad-rotor motion control is very topical right now [2, 3, 12]. The most popular type of

the quad-rotor control systems is very well known PID-control, which is successfully applied in

many practical cases [11]. However the further enhancement of the quad-rotor control properties

is possible via application of more sophisticated methods of control theory. Below we will

show, that, using the dynamic model of quad-rotor [2, 3] and traditional optimization problem

statement, it is possible to design linear controllers, which can compete effectively with nonlinear

ones [9]. Application of these algorithms allows the purposeful changing of the performance

functional parameters in order to obtain desirable dynamic behavior of the flight control system.

The results of the computer simulation demonstrate significant improvement of the LQR-based

quad-rotor flight control system performance in comparison with results obtained in [3]. On the

basis of these results the problem of the reference path tracking by the quad-rotor is considered

below [4, 8, 12]. Then the problem of the quad-rotor cruise speed control is considered (note,

that such kind of problems preserve their actuality [16, 10]). The peculiarities of such problem

are stated [1].

All theoretical results are illustrated by examples showing the efficiency of proposed algo-

rithms.
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2. Dynamic model of the quad-rotor

The quad-rotor scheme is represented in Figure 1 (corresponds to Figure metric in [2]). Let

ξ = [x y z]
′
is the radius-vector of the quad-rotor center of mass in some inertial frame {X,Y, Z},

ψ, θ, φ are the yaw, pitch and roll angles respectively, f1 is the lifting force produced by the i-th

motor Mi (i = 1, 4). Here and further prime denotes transposing. In accordance with [2, 3], the

motion of this system is described by the following system of equations:

Figure 1.

m
d2x

dt2
= −u sin θ, (1)

m
d2y

dt2
= u cos θ sinφ, (2)

m
d2z

dt2
= u cos θ cosφ−mg, (3)

d2ψ

dt2
= τ̃ψ, (4)

d2θ

dt2
= τ̃θ, (5)

d2φ

dt2
= τ̃φ. (6)
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In equations (1) – (6) m stands for the mass of the quad-rotor, g = 9, 8/ stands for the gravity

acceleration, u, τ̃ψ, τ̃θ, τ̃φ are the control inputs, which are the functions of the lifting forces

f1. In [3, 4 2, 3] control input uis used for the quad-rotor altitude control and the control input

τ̃ψ allows the yaw angle stabilization. The control inputs τ̃θ and τ̃φ are used for control of the

pitch θ and roll φ angles as well as for control of the quad-rotor linear motion along the axes x

and y respectively.

3. Altitude and yaw angle control algorithms

In accordance with [2, 3], the closed loop system of the quad-rotor altitude z control is defined

by the following equation:

u = (r1 +mg)
1

cos θ cosφ
. (7)

It is supposed in [2, 3] that cos θ cosφ ̸= 0. In equation (7) the r1(z, ż) stands for the altitude

PD-control law

r1 = −az1 ˙̂z − az2(z − zd) (8)

where az1 , az2 are the differential and proportional gains (positive constants) and zd is the

reference (desired) altitude.

The yaw angle control law is the same:

τ̃ψ = −aψ1

˙̂
ψ − aψ2(ψ − ψd). (9)

Supposing thatcos θ cosφ ̸= 0, we have:

mẍ = − (r1 +mg)
tan θ

cosφ
(10)

mÿ = (r1 +mg) tanφ (11)

¨̂z =
1

m

(
az1

˙̂z − az2(z − zd)
)

(12)

¨̂
ψ = −aψ1

˙̂
ψ − aψ2(ψ − ψd). (13)

Coefficients aψ1 , aψ2 ,az1 , az2 in (12), (13) must be chosen from these systems asymptotic sta-

bility conditions. This circumstance in turn will provide the satisfaction of the conditions

ψ → ψd, z → zd.

4. Control of the coordinate pairs (φ, y) and (θ, x) [3, 4 2, 3]

It is noted in [2, 3] that the assumption about asymptotic stability permits to make the

following conclusion: for sufficiently large value of the time period T it is possible to replace

(10), (11) with following relations:

d2x

dt2
= −g tan θ

cosφ
(14)

.
d2y

dt2
= g tanφ (15)
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Considering θ, φ as small angles and taking in account equations (6), (6), the following rela-

tions, which define these coordinates propagations, are given in [2, 3]:

d2y

dt2
= gφ, (16)

d2φ

dt2
= τ̃φ, (17)

d2x

dt2
= −gθ, (18)

d2θ

dt2
= τ̃θ. (19)

It is recommended in [2, 3] to apply the following nonlinear algorithm [9] for stabilization of the

coordinatesx, y:

τ̃φ = −σφ1

(
˙̂φ+ σφ2

(
φ+ φ̇+ σφ3

(
2φ+ ˙̂φ+

ẏ

g
+ σφ4

(
˙̂φ+ 3φ+ 3

ẏ

g
+
y

g

))))
, (20)

τ̃θ = −σθ1
(
φ̇+ σθ2

(
θ + θ̇ + σθ3

(
2θ + θ̇ +

ẋ

g
+ σθ4

(
θ̇ + 3θ + 3

ẋ

g
+
x

g

))))
. (21)

In these relations σa(s) are nonlinear saturation functions [2, 3]:

σa(s) =


−a
s

a

s < −a;
−a ≤ s ≤ a;

s > a.

5. Comparison of linear and non-linear stabilization algorithms

This comparison was made in [3] by usage of examples. So, as an example, the system (16),

(17) was considered. It may be represented in the following form:

ṗ = Ap+Bu, (22)

p =
[
y, ˙̂y, φ, ˙̂φ

]
,

A =


0 1 0 0

0 0 g 0

0 0 0 1

0 0 0 0

 ,
B =

[
0 0 0 1

]′
, u = ¯̂τφ.

For system (22) in [4 3] authors has synthesized optimal linear controller in accordance with the

following performance index:

J =

∫ ∞

0

(
p′Qp+ u′Ru

)
dt. (23)

In this performance index numerical values of the matrices Q and R were accepted in [4 3] as

follows:



V.B. LARIN, A.A. TUNIK: SYNTHESIS OF THE QUAD-ROTOR CONTROL ALGORITHMS ... 151

R = 1, Q =


1 −2 −4 6

−2 4 8 −12

−4 8 16 −24

6 −12 −24 36

 .
Applying standard procedure of the LQR-synthesis, the following numerical values of the con-

troller gains (K) and the vector Zcl of the eigenvalues of the closed loop system (A−BK) were

obtained:

K =
[
1 3.2848 29.3030 9.7266

]
,

Zcl = [−5.2393, −2.3946, −1.6056, −0.4870] .

It is noted in [3] that open-loop linear system (16), (17) or (22) with this controller under

following initial conditions ˙̂y(0) = 0, y(0) = ±0, ˙̂φ(0) = 0, φ(0) = 0 quickly returns to the

equilibrium state (see Fig.2 in [3]). However in the case of the non-linear system (15), (17) this

controller doesn’t provide the stability of control system (see Fig.3 in [3]). Meanwhile the usage

of the non-linear controller (20) allows stabilization of non-linear system under following initial

conditions: ˙̂y(0) = 0, y(0) = 200, ˙̂φ(0) = 0, φ(0) = 40 (see Fig.5 in [3]).

Nevertheless comparing linear and non-linear controllers it is necessary to note, that in the

linear case in accordance with the Fig.2 () [3] the φ(t)-plot two times during the transient process

intersects the value−π
2 . So the conditioncosφ cos θ ̸= 0, imposed by authors earlier, is violated.

6. Control system optimization

It was mentioned above that the choice of the matrices R,Q for performance index (23)

accepted in [3] is not optimal. In particular the linear controller obtained on the basis of such

matrices R,Q leads to the violation of the condition cosφ cos θ ̸= 0 during the transient process.

So it is expedient to modify weight matrices R andQ in order to optimize the transient processes

in the system.

Note that in the procedure of the LQR-synthesis in accordance with (22), (23) it is expedient

to decrease the values of the state variables φ, ˙̂φ and the control variable ¯̂τφ during the transient

process. Taking in account these considerations it is possible to choose the following values of

the matrices R,Q entries:

R = 104, Q =


1 −2 −4 6

−2 4 8 −12

−4 8 16 · 104 −24

6 −12 −24 36 · 104

 . (24)

Optimizing (23) subject to (22) with new entries of matrices R,Q defined by (24), we obtain the

following values of the controller gains (K) and the eigenvalues Zcl of the closed-loop system(A−
BK):

K =
[
0.01 0.1083 5.5123 6.8574

]
, (25)

Zcl = [−5.9623, −0.6702, −0.1125± 0.1090i] .
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The efficiency of this procedure we can estimate using example given in [4 3]. The following

values of the initial conditions are accepted: y(0) = 200 <, ˙̂y(0) = 0, φ(0) = 400, ˙̂φ(0) = 0.

The simulation results are represented in the Figures 2 – 5.

Figure 2.

Figure 3.

Figure 4.
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Figure 5.

Comparing these plots with the results represented in the Figure 5 of the reference [4 3], it is

possible to conclude that controller considered in this item possesses certain advantages. Thus

the y(t)- plot in the Figure 5a in [3] differs from zero essentially on the interval 0 − 125c.

Meanwhile in our case (see Figure 2) this interval equals 0− 25c.

Continuing further comparison of Figure 5b in [3] and Figure metricconverterProductID3

in3 in this paper it is possible to mark the following distinctions. If in Figure 5b [3] the ˙̂y(t)-

plot abruptly changes practically from 0 to 200 m/sec during small period of time, then the

corresponding plot in the Figure 3 of this paper demonstrates more smooth changing, when

significant linear accelerations are absent and the maximal absolute value of the ˙̂y(t)-plot equals

15 m/sec. Note that if the controller (25) is used for control of the non-linear system (15), (17),

then the simulation results, represented in the Figures 2 – 5, will change negligible.

This conclusion is derived from results shown in the Table 1.

Table 1.

y(m) dy/dt(m/sec) φ(rad) dφ/dt(rad/sec)

1 208,3 14,47 0,7 0,72

2 4,59 0,59 0,018 0,048

In the 1st raw of the table 1 the maximal absolute values of state space variables are given.

Their time histories are shown in the Figures 2-5. In the 2nd raw the maximal values of the

modules of differences between simulation results of system (16), (17), (25) and system (15),

(17), (25) are given.

Therefore it could be stated that in the considered problems the efficiency of the linear controller

with the proper choice of matrices Q,R is not worse, than the nonlinear one despite of the

opposite statement in [3]. From the other hand the linear controller (25) is much simpler then

the nonlinear controllers (21), (21).

This fact in turn allows usage of the linear controllers (with corresponding optimization) in other

similar problems of such plants control.

7. Synthesis of the path tracking algorithm

We return to the system (16), (17), which will be written in the form (22). Suppose, that

vector of the feedback gains

K =
[
k1 k2 k3 k4

]
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is obtained as a result of the functional (23) optimization. In this case the equation of the

controller that provides the closed-loop system asymptotic stability will have the following form

u = k1y + k2 ˙̂y + k3φ+ k4 ˙̂φ. (26)

Likewise to the item 3 we will generalize the algorithm (26) on the case of the tracking of the

given (program) changing of the coordinate y (or program signal yp). Namely, let control law

will have the following form:

u = k1(y − yp) + k2 ˙̂y + k3φ+ k4 ˙̂φ. (27)

However such simple algorithm can’t provide sufficient tracking performance, if yp is compara-

tively fast changing function.

Consider the problem of the performance improvement in the case [6], when in the low-pass

frequency band the main tracking error appears due to the phase lag. We can write the transfer

function between the input (yp) and output (y) of the system, which is described by equations

(22) and (27). This transfer function H(s) (y = H(s)yp, s = iω) has the following form

H(s) =
gk1

s4 + s3k4 + s2k3 + sgk2 + gk1
. (28)

If the frequencies are relatively low ω << 1 (s = iω), the magnitude frequency response of the

system with transfer function (28) will be close to metricconverterProductID1. In1. In this

frequency band the main error between the output of the tracking system (y) and reference

input track (yp) will be determined

yp, y − ypyp, y − ypby phase lag. This lag ν, which is produced by the system with transfer

function (28), for small ω is determined by the following expression

ν = −k2
k1
ω. (29)

The phase delay (29) can be compensated by including in the stabilization algorithm (27) the

magnitude of the program signal Figure 6 yp(t+∆) corresponding to some time lead ∆, i.e.

u = k1(y − yp(t+∆)) + k2 ˙̂y + k3φ+ k4 ˙̂φ. (30)

Indeed, the transfer function H1(s) corresponding to (30) has the following form

H1(s) = H(s)e∆s.

The phase lag of this system in the low-pass frequency band (the analog of (29)) may be written

as follows

ν = −k2
k1
ω +∆ω. (31)

Taken ∆ from conditionν = 0, we will find in accordance with (31):

∆ =
k2
k1
. (32)
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Figure 6.

We will illustrate the efficiency of such approach using example considered in the item 6. We

suppose thatyp = a sin(ωt), a = 100, ω = 2π
100 . In accordance with (25) we have: k1 = 0, 01, k2 =

0, 1083, k3 = 5, 5123, k4 = 6, 8574. Using expression (32), we will obtain ∆ = k2
k1

= 10, 83.

The simulation results are given in the Figure metricconverterProductID6. In6. In this Figure

the solid line corresponds to the program signal (yp(t)), dash line corresponds to the tracking

error (y − yp) when ∆ = 0 (control law is determined by expression (27)), and the dash-dotted

line corresponds to the tracking error in the case, when control law is determined by (30) and

the value ∆ is determined by (32), i.e. ∆ = 10, 83. Results shown in the Figure 6 demonstrate

that including in the control law the program signal with the time lead determined by (32) can

essentially improve the tracking performance.

Note that in the considered algorithm the restriction on the program signal derivative is absent

[12].

8. Control of the quad-rotor speed

We continue the consideration of the quad-rotor motion control along the y-axis. However we

will assume that the reference value is not the final point ydon this axis as it was stated in [3],

but the reference speed of the quad-rotor motion along this axis ˙̂yd. This problem statement has

crucial importance for the design of the UAV path following guidance algorithms [5, 6], because

the ultimate goal of the guidance problem solution is the UAV velocity vector control.

Let us formulate corresponding optimization problem. Assume that the quad-rotor motion is

described with the equation (22). In order to optimize the transient processes it is necessary to

decrease the value of the state variable φ(t) and control moment¯̂τφ(t). As far as the y−variable is

not minimized, it must be excluded from the criterion (23). Taking in account this consideration,

the matrix Q in (23) is chosen in the following form:

Q =


0 0 0 0

0 1 0 0

0 0 c 0

0 0 0 1

 . (33)

Proper choice of the weight R and value c in (33) allows the restriction of the values φ(t) and
¯̂τφ(t) mentioned above.
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It is necessary to note that such choice of the matrix Q will lead to the singularity of the

Hamiltonian matrix of the variation problem, defined by relations (22), (23). This fact can create

some certain difficulties in the solution of the problem of the controller gains determination.

Thus, for instance, under such problem statement it is impossible to use the MATLAB LQR-

procedure. That is why it is expedient to use the approach proposed in the item 1.4 of the

reference [1].

So let matrix U exists, which reduces matrices A,Q to the following form:

¯̂
A = UAU ′ =

[
A1 0

A2 0

]
,
¯̂
Q = UQU ′ =

[
Q1 0

0 0

]
.

In our case matrix U might be chosen as follows:

U =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 .
Solution of the Riccati equation SA + A′S − SBR−1B′S + Q = 0, which corresponds to the

variation problem determined by (22), (23), must be sought in the form [1]:

S = U ′
[
S1 0

0 0

]
U. (34)

Matrix S1 in (34) satisfies to the following Riccati equation:

S1A1 +A′
1S1 − S1b1S1 +Q = 0, (35)

UBR−1B′U ′ =

[
b1 b2
b2 b3

]
.

After finding solution of the equation (35) and using relation (34) it is possible to determine

controller gains in the following way:

K =
[
k1 k2 k3 k4

]
= R−1B′S. (36)

The peculiarity of the matrix U structure leads to the following structure of the matrix S, which

is determined by (34):

S =

[
0 0

0 S̃

]
.

So the first gain in the controller gain matrix (36) will equal zero and the controller equation in

this problem has the following form:

¯̂τφ = −k2( ˙̂y − ˙̂yd)− k3φ− k4 ˙̂φ. (37)

Note, that it is possible to obtain the similar control algorithm to the problem of the quad-rotor

motion control along the x-axis.

Example 8.1. We will illustrate the synthesis of controller (37). It is assumed that weight

coefficients are: R = 10 in (23), and c = 102 in (33). For these initial data the following

expressions for matrix S and controller gain matrix Kwere obtained as follows:
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S =


0 0 0 0

0 2.1027 11.4597 3.1623

0 11.4597 205.1464 65.1621

0 3.1623 65.1621 36.2387

 ,
K =

[
0 0.3162 6.5162 3.6239

]
.

The state propagation matrix (A−BK) of the closed-loop system has the following eigenvalues:

Zcl = [ 0, −0.69, −1.4670± 1.5297i ].

The transient process in this system (plots of the ˙̂y(t) φ(t) variables under zero initial conditions)

and given value dyd
dt = 1 m/sec is represented in the Figure 7 (the solid line corresponds to the

˙̂y(t)-plot, and the dashed line corresponds to the 10 · φ(t)-plot). As it could be seen from this

Figure the maximum value of the φ(t) variable (roll angle) is sufficiently small (∼= 4 · 10−2rad).

Figure 7.

9. Conclusion

1. The problem of the synthesis of the quad-rotor horizontal motion control is considered for

three basic flight control modes: position control, reference path tracking and cruise speed

control.

2. In the 1st case it was proposed the control algorithm based on the LQR- synthesis for control

of the given final quad-rotor position on the horizontal plane. The comparison of this result

with non-linear control algorithm proposed in [3, 9] shows that the proper usage of the LQR-

synthesis procedure leads to the quite acceptable results which could be successfully compared

with results obtained by the usage of the non-linear algorithm. However that linear control

algorithm is simpler than non-linear one and its implementation in the onboard microcontroller

is essentially easier.

3. In the 2nd case the algorithm of the reference path tracking by quad-rotor was proposed. This

algorithm is based on the results obtained from the 1st case from one hand and on introducing

the phase lead in the control law for compensation of the phase lag produced by closed-loop
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control system from the other hand. This phase lead essentially improves the path tracking

performance.

4. In the 2-nd case the quad-rotor speed control algorithm was synthesized. This control

algorithm is very important for the design of the quad-rotor path tracking guidance systems. The

peculiarity of this algorithm is the singularity of the Hamiltonian matrix of the corresponding

variation problem. The approach for the solution of such kind of problems was proposed in [1].

Using this approach it was possible to find quad-rotor speed controller with optimized transient

processes.
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